Entry Value
Name natural-prime_40
Conclusion !p1 p2. prime p1 /\ prime p2 /\ divides p1 p2 ==> p1 = p2
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !t. F /\ t <=> F
  • !t. (T <=> t) <=> t
  • !t. T ==> t <=> t
  • !t. t ==> F <=> ~t
  • !t. t \/ t <=> t
  • !p1 p2. prime p1 /\ prime p2 /\ divides p1 p2 ==> p1 = p2
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • ~F <=> T
  • ~T <=> F
  • (~) = (\p. p ==> F)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)
  • (!) = (\p. p = (\x. T))
  • Contained Package natural-prime
    Comment Natural-prime package from OpenTheory.
    Back to main package pageBack to contained package page