Entry
Value
Name
natural-prime_29
Conclusion
!i j. i <= j ==> snth primes i <= snth primes j
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
!t. (!x. t) <=> t
!t. t ==> t
!i j. i <= j ==> snth primes i <= snth primes j
T <=> (\p. p) = (\p. p)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(!) = (\p. p = (\x. T))
Contained Package
natural-prime
Comment
Natural-prime package from OpenTheory.
Back to main package page
Back to contained package page