Entry
Value
Name
natural-prime_2
Conclusion
~prime 1
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
!x. x = x
!t. (!x. t) <=> t
!t. F /\ t <=> F
!t. t \/ t <=> t
!f y. (\x. f x) y = f y
~prime 1
F <=> (!p. p)
T <=> (\p. p) = (\p. p)
~F <=> T
~T <=> F
(~) = (\p. p ==> F)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)
(!) = (\p. p = (\x. T))
NUMERAL = (\n. n)
Contained Package
natural-prime
Comment
Natural-prime package from OpenTheory.
Back to main package page
Back to contained package page