Theorems |
EQ_IMP_LE : !m n. m = n ==> m <= nLET_ANTISYM : !m n. ~(m <= n /\ n < m)LET_CASES : !m n. m <= n \/ n < mLET_TRANS : !m n p. m <= n /\ n < p ==> m < pLE_0 : !n. 0 <= nLE_ANTISYM : !m n. m <= n /\ n <= m <=> m = nLE_CASES : !m n. m <= n \/ n <= mLE_LT : !m n. m <= n <=> m < n \/ m = nLE_REFL : !n. n <= nLE_SUC : !m n. SUC m <= SUC n <=> m <= nLE_SUC_LT : !m n. SUC m <= n <=> m < nLE_TRANS : !m n p. m <= n /\ n <= p ==> m <= pLTE_ANTISYM : !m n. ~(m < n /\ n <= m)LTE_CASES : !m n. m < n \/ n <= mLTE_TRANS : !m n p. m < n /\ n <= p ==> m < pLT_0 : !n. 0 < SUC nLT_ANTISYM : !m n. ~(m < n /\ n < m)LT_CASES : !m n. m < n \/ n < m \/ m = nLT_IMP_LE : !m n. m < n ==> m <= nLT_IMP_NEQ : !m n. m < n ==> ~(m = n)LT_LE : !m n. m < n <=> m <= n /\ ~(m = n)LT_NZ : !n. 0 < n <=> ~(n = 0)LT_REFL : !n. ~(n < n)LT_SUC : !m n. SUC m < SUC n <=> m < nLT_SUC_LE : !m n. m < SUC n <=> m <= nLT_TRANS : !m n p. m < n /\ n < p ==> m < pNOT_LE : !m n. ~(m <= n) <=> n < mNOT_LT : !m n. ~(m < n) <=> n <= mSUC_LE : !n. n <= SUC nSUC_LT : !n. n < SUC nnum_MAX : !p. (?n. p n) /\ (?m. !n. p n ==> n <= m) <=>
(?m. p m /\ (!n. p n ==> n <= m))num_WF : !p. (!n. (!m. m < n ==> p m) ==> p n) ==> (!n. p n)num_WOP : !p. (?n. p n) <=> (?n. p n /\ (!m. m < n ==> ~p m)) |