Entry Value
Package Name natural-order-thm
Count 33
Theorems
  • EQ_IMP_LE : !m n. m = n ==> m <= n
  • LET_ANTISYM : !m n. ~(m <= n /\ n < m)
  • LET_CASES : !m n. m <= n \/ n < m
  • LET_TRANS : !m n p. m <= n /\ n < p ==> m < p
  • LE_0 : !n. 0 <= n
  • LE_ANTISYM : !m n. m <= n /\ n <= m <=> m = n
  • LE_CASES : !m n. m <= n \/ n <= m
  • LE_LT : !m n. m <= n <=> m < n \/ m = n
  • LE_REFL : !n. n <= n
  • LE_SUC : !m n. SUC m <= SUC n <=> m <= n
  • LE_SUC_LT : !m n. SUC m <= n <=> m < n
  • LE_TRANS : !m n p. m <= n /\ n <= p ==> m <= p
  • LTE_ANTISYM : !m n. ~(m < n /\ n <= m)
  • LTE_CASES : !m n. m < n \/ n <= m
  • LTE_TRANS : !m n p. m < n /\ n <= p ==> m < p
  • LT_0 : !n. 0 < SUC n
  • LT_ANTISYM : !m n. ~(m < n /\ n < m)
  • LT_CASES : !m n. m < n \/ n < m \/ m = n
  • LT_IMP_LE : !m n. m < n ==> m <= n
  • LT_IMP_NEQ : !m n. m < n ==> ~(m = n)
  • LT_LE : !m n. m < n <=> m <= n /\ ~(m = n)
  • LT_NZ : !n. 0 < n <=> ~(n = 0)
  • LT_REFL : !n. ~(n < n)
  • LT_SUC : !m n. SUC m < SUC n <=> m < n
  • LT_SUC_LE : !m n. m < SUC n <=> m <= n
  • LT_TRANS : !m n p. m < n /\ n < p ==> m < p
  • NOT_LE : !m n. ~(m <= n) <=> n < m
  • NOT_LT : !m n. ~(m < n) <=> n <= m
  • SUC_LE : !n. n <= SUC n
  • SUC_LT : !n. n < SUC n
  • num_MAX : !p. (?n. p n) /\ (?m. !n. p n ==> n <= m) <=> (?m. p m /\ (!n. p n ==> n <= m))
  • num_WF : !p. (!n. (!m. m < n ==> p m) ==> p n) ==> (!n. p n)
  • num_WOP : !p. (?n. p n) <=> (?n. p n /\ (!m. m < n ==> ~p m))
  • Back to main package page