Theorems |
EQ_EXP : !x m n.
x EXP m = x EXP n <=> (if x = 0 then m = 0 <=> n = 0 else x = 1 \/ m = n)EVEN_EXP : !m n. EVEN (m EXP n) <=> EVEN m /\ ~(n = 0)EVEN_ODD_DECOMPOSITION : !n. (?k m. ODD m /\ n = 2 EXP k * m) <=> ~(n = 0)EXP_1 : !n. n EXP 1 = nEXP_2 : !n. n EXP 2 = n * nEXP_ADD : !m n p. m EXP (n + p) = m EXP n * m EXP pEXP_EQ_0 : !m n. m EXP n = 0 <=> m = 0 /\ ~(n = 0)EXP_EQ_1 : !x n. x EXP n = 1 <=> x = 1 \/ n = 0EXP_LT_0 : !n x. 0 < x EXP n <=> ~(x = 0) \/ n = 0EXP_MONO_EQ : !x y n. x EXP n = y EXP n <=> x = y \/ n = 0EXP_MONO_LE : !x y n. x EXP n <= y EXP n <=> x <= y \/ n = 0EXP_MONO_LE_IMP : !x y n. x <= y ==> x EXP n <= y EXP nEXP_MONO_LT : !x y n. x EXP n < y EXP n <=> x < y /\ ~(n = 0)EXP_MONO_LT_IMP : !x y n. x < y /\ ~(n = 0) ==> x EXP n < y EXP nEXP_MULT : !m n p. m EXP (n * p) = m EXP n EXP pEXP_ONE : !n. 1 EXP n = 1EXP_ZERO : !n. 0 EXP n = (if n = 0 then 1 else 0)LE_EXP : !x m n.
x EXP m <= x EXP n <=>
(if x = 0 then m = 0 ==> n = 0 else x = 1 \/ m <= n)LT_EXP : !x m n. x EXP m < x EXP n <=> 2 <= x /\ m < n \/ x = 0 /\ ~(m = 0) /\ n = 0LT_POW2_REFL : !n. n < 2 EXP nMOD_EXP_MOD' : !n m p. ~(n = 0) ==> (m MOD n) EXP p MOD n = m EXP p MOD nMOD_MOD_EXP_MIN : !x p m n. ~(p = 0) ==> x MOD p EXP m MOD p EXP n = x MOD p EXP MIN m nMULT_EXP : !p m n. (m * n) EXP p = m EXP p * n EXP pODD_EXP : !m n. ODD (m EXP n) <=> ODD m \/ n = 0large_exp : !k n. 1 < k ==> (?m. n <= k EXP m) |