Entry
Value
Name
natural-bits_55
Conclusion
!n. bit_hd (SUC n) <=> ~bit_hd n
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
!t. (!x. t) <=> t
!t. (F <=> t) <=> ~t
!t. (T <=> t) <=> t
!t. (t <=> F) <=> ~t
!t. (t <=> T) <=> t
!n. ODD (SUC n) <=> ~ODD n
!n. bit_hd n <=> ODD n
!n. bit_hd (SUC n) <=> ~bit_hd n
F <=> (!p. p)
T <=> (\p. p) = (\p. p)
(~) = (\p. p ==> F)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(!) = (\p. p = (\x. T))
Contained Package
natural-bits
Comment
Probability package from OpenTheory.
Back to main package page
Back to contained package page