Entry Value
Name natural-bits_210
Conclusion !n w r. random_uniform_loop n w r = (let r1,r2 = split_random r in let l = random_bits w r1 in let m = bits_to_num l in if m < n then m else random_uniform_loop n w r2)
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !x. x = x
  • !t. (!x. t) <=> t
  • !f y. (\x. f x) y = f y
  • !n w r. random_uniform_loop n w r = (let r1,r2 = split_random r in let l = random_bits w r1 in let m = bits_to_num l in if m < n then m else random_uniform_loop n w r2)
  • T <=> (\p. p) = (\p. p)
  • LET_END = (\t. t)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • LET = (\f. f)
  • (!) = (\p. p = (\x. T))
  • Contained Package natural-bits
    Comment Probability package from OpenTheory.
    Back to main package pageBack to contained package page