Entry |
Value |
Name |
natural-bits_204 |
Conclusion |
!m n.
bit_and m n =
bits_to_num
(MAP (\i. bit_nth m i /\ bit_nth n i)
(interval 0 (MIN (bit_width m) (bit_width n)))) |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x. x = x!t. (!x. t) <=> t!f y. (\x. f x) y = f y!m n.
bit_and m n =
bits_to_num
(MAP (\i. bit_nth m i /\ bit_nth n i)
(interval 0 (MIN (bit_width m) (bit_width n))))T <=> (\p. p) = (\p. p)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(!) = (\p. p = (\x. T))NUMERAL = (\n. n) |
Contained Package |
natural-bits |
Comment |
Probability package from OpenTheory. |