Entry |
Value |
Name |
natural-bits_168 |
Conclusion |
!n r.
random_uniform n r =
(let w = bit_width (n - 1) in random_uniform_loop n w r) |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x. x = x!t. (!x. t) <=> t!f y. (\x. f x) y = f y!n r.
random_uniform n r =
(let w = bit_width (n - 1) in random_uniform_loop n w r)T <=> (\p. p) = (\p. p)LET_END = (\t. t)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)LET = (\f. f)(!) = (\p. p = (\x. T))NUMERAL = (\n. n) |
Contained Package |
natural-bits |
Comment |
Probability package from OpenTheory. |