Entry |
Value |
Name |
natural-bits_139 |
Conclusion |
!n. random_uniform n =
(\r. let w = bit_width (n - 1) in random_uniform_loop n w r) |
Constructive Proof |
Yes |
Axiom |
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d) |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x y. x = y <=> y = x!x y. x = y ==> y = x!x. x = x!t. (!x. t) <=> t!t. F ==> t <=> T!t. T ==> t <=> t!t. t ==> F <=> ~t!t. t ==> T <=> T!t. t ==> t!f y. (\x. f x) y = f y!f g. (!x. f x = g x) <=> f = g!f g. (!x. f x = g x) ==> f = g!t. (\x. t x) = t!n. random_uniform n =
(\r. let w = bit_width (n - 1) in random_uniform_loop n w r)F <=> (!p. p)T <=> (\p. p) = (\p. p)LET_END = (\t. t)(~) = (\p. p ==> F)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)LET = (\f. f)(!) = (\p. p = (\x. T))NUMERAL = (\n. n) |
Contained Package |
natural-bits |
Comment |
Probability package from OpenTheory. |