Entry Value
Name natural-bits_100
Conclusion !h t. bits_to_num (CONS h t) = bit_cons h (bits_to_num t)
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !h t. bits_to_num (CONS h t) = bit_cons h (bits_to_num t)
  • !t. (!x. t) <=> t
  • !f b h t. foldr f b (CONS h t) = f h (foldr f b t)
  • !l n. bit_append l n = foldr bit_cons n l
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • Contained Package natural-bits
    Comment Probability package from OpenTheory.
    Back to main package pageBack to contained package page