| Entry |
Value |
|
Name |
natural-bits_100 |
|
Conclusion |
!h t. bits_to_num (CONS h t) = bit_cons h (bits_to_num t) |
|
Constructive Proof |
Yes |
|
Axiom |
N|A |
|
Classical Lemmas |
N|A |
|
Constructive Lemmas |
T!h t. bits_to_num (CONS h t) = bit_cons h (bits_to_num t)!t. (!x. t) <=> t!f b h t. foldr f b (CONS h t) = f h (foldr f b t)!l n. bit_append l n = foldr bit_cons n lT <=> (\p. p) = (\p. p)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(!) = (\p. p = (\x. T)) |
|
Contained Package |
natural-bits |
|
Comment |
Probability package from OpenTheory. |