Constructive Lemmas |
T!x. x = x!p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 /\ q1 ==> p2 /\ q2!p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 \/ q1 ==> p2 \/ q2!t. (!x. t) <=> t!t. F /\ t <=> F!t. T /\ t <=> t!t. t /\ F <=> F!t. t /\ T <=> t!t. t /\ t <=> t!t. F ==> t <=> T!t. T ==> t <=> t!t. t ==> F <=> ~t!t. t ==> T <=> T!t. t ==> t!f h t. MAP f (CONS h t) = CONS (f h) (MAP f t)!f y. (\x. f x) y = f y!f. MAP f [] = []!p q. (!x. p x ==> q x) ==> (?x. p x) ==> (?x. q x)!p. (!x y. p x y) <=> (!y x. p x y)!p. p _0 /\ (!n. p n ==> p (SUC n)) ==> (!n. p n)!m n. interval m (SUC n) = CONS m (interval (SUC m) n)!m. interval m 0 = []F <=> (!p. p)T <=> (\p. p) = (\p. p)(~) = (\p. p ==> F)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)(!) = (\p. p = (\x. T))(?) = (\p. !q. (!x. p x ==> q) ==> q)NUMERAL = (\n. n) |