Entry |
Value |
Name |
length_setify |
Conclusion |
!l. LENGTH (setify l) <= LENGTH l |
Constructive Proof |
No |
Axiom |
!t. t \/ ~t
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d)
(\a. a = (\b. (\c. c) = (\c. c)))
(\d. (\e. e = (\f. (\c. c) = (\c. c)))
(\g. (\h i.
(\j k.
(\l. l j k) =
(\m. m ((\c. c) = (\c. c)) ((\c. c) = (\c. c))))
h
i <=>
h)
(d g)
(d ((@) d))))
(\a. (\b. b = (\c. (\d. d) = (\d. d)))
(\e. (\f g.
(\h i.
(\j. j h i) =
(\k. k ((\d. d) = (\d. d)) ((\d. d) = (\d. d))))
f
g <=>
f)
((\l. l = (\m. (\d. d) = (\d. d)))
(\n. (\f g.
(\h i.
(\j. j h i) =
(\k. k ((\d. d) = (\d. d)) ((\d. d) = (\d. d))))
f
g <=>
f)
(a n)
e))
e))
(\p. (\h i. (\j. j h i) = (\k. k ((\d. d) = (\d. d)) ((\d. d) = (\d. d))))
((\q. q = (\r. (\d. d) = (\d. d)))
(\s. (\q. q = (\r. (\d. d) = (\d. d)))
(\t. (\f g.
(\h i.
(\j. j h i) =
(\k. k ((\d. d) = (\d. d)) ((\d. d) = (\d. d))))
f
g <=>
f)
(p s = p t)
(s = t))))
((\u. (\f g.
(\h i.
(\j. j h i) =
(\k. k ((\d. d) = (\d. d)) ((\d. d) = (\d. d))))
f
g <=>
f)
u
((\b. b = (\c. (\d. d) = (\d. d))) (\d. d)))
((\q. q = (\r. (\d. d) = (\d. d)))
(\v. (\w. (\b. b = (\c. (\d. d) = (\d. d)))
(\x. (\f g.
(\h i.
(\j. j h i) =
(\k. k ((\d. d) = (\d. d)) ((\d. d) = (\d. d))))
f
g <=>
f)
((\q. q = (\r. (\d. d) = (\d. d)))
(\y. (\f g.
(\h i.
(\j. j h i) =
(\k. k ((\d. d) = (\d. d))
((\d. d) = (\d. d))))
f
g <=>
f)
(w y)
x))
x))
(\z. v = p z))))) |
Classical Lemmas |
!t1 t2. ~(t1 /\ t2) <=> ~t1 \/ ~t2!t1 t2. ~(t1 ==> t2) <=> t1 /\ ~t2!t1 t2. ~(t1 \/ t2) <=> ~t1 /\ ~t2!t. ~ ~t <=> t!t. (t <=> T) \/ (t <=> F)!p. (?x. ~p x) <=> ~(!x. p x)!p. ~(!x. p x) <=> (?x. ~p x)!p. ~(?x. p x) <=> (!x. ~p x)!m n. SUC m <= n <=> m < n!m n. SUC m <= SUC n <=> m <= n!m n. SUC m = SUC n <=> m = n!n. ~(SUC n = _0) |
Constructive Lemmas |
T!t1 t2. (if F then t1 else t2) = t2!t1 t2. (if T then t1 else t2) = t1!x y. x = y <=> y = x!x y. x = y ==> y = x!h t. setify (CONS h t) = (if MEM h t then setify t else CONS h (setify t))!h t. LENGTH (CONS h t) = SUC (LENGTH t)!x. x = x!x. (@y. y = x) = x!p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 /\ q1 ==> p2 /\ q2!p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 \/ q1 ==> p2 \/ q2!t1 t2 t3. (t1 /\ t2) /\ t3 <=> t1 /\ t2 /\ t3!t1 t2 t3. (t1 \/ t2) \/ t3 <=> t1 \/ t2 \/ t3!t1 t2. ~(t1 /\ t2) <=> ~t1 \/ ~t2!t1 t2. ~(t1 ==> t2) <=> t1 /\ ~t2!t1 t2. ~(t1 \/ t2) <=> ~t1 /\ ~t2!t1 t2. t1 \/ t2 <=> t2 \/ t1!p q. (?x. p /\ q x) <=> p /\ (?x. q x)!p q. p /\ (?x. q x) <=> (?x. p /\ q x)!p q. p \/ (?x. q x) <=> (?x. p \/ q x)!t. (!x. t) <=> t!t. ~ ~t <=> t!t. F /\ t <=> F!t. T /\ t <=> t!t. t /\ F <=> F!t. t /\ T <=> t!t. t /\ t <=> t!t. (F <=> t) <=> ~t!t. (T <=> t) <=> t!t. (t <=> F) <=> ~t!t. (t <=> T) <=> t!t. F ==> t <=> T!t. T ==> t <=> t!t. t ==> F <=> ~t!t. t ==> T <=> T!t. F \/ t <=> t!t. T \/ t <=> T!t. t \/ F <=> t!t. t \/ T <=> T!t. t \/ t <=> t!t. t ==> t!t. (t <=> T) \/ (t <=> F)!f y. (\x. f x) y = f y!f g. (!x. f x = g x) ==> f = g!f. ONE_ONE f <=> (!x1 x2. f x1 = f x2 ==> x1 = x2)!f. ONTO f <=> (!y. ?x. y = f x)!t. (\x. t x) = t!p x. p x ==> p ((@) p)!p q. (?x. p x) \/ q <=> (?x. p x \/ q)!p q. (!x. p x /\ q x) <=> (!x. p x) /\ (!x. q x)!p q. (?x. p x \/ q x) <=> (?x. p x) \/ (?x. q x)!p q. (?x. p x) \/ (?x. q x) <=> (?x. p x \/ q x)!p q. (!x. p x ==> q x) ==> (?x. p x) ==> (?x. q x)!p. (?x. ~p x) <=> ~(!x. p x)!p. ~(!x. p x) <=> (?x. ~p x)!p. ~(?x. p x) <=> (!x. ~p x)!r. (!x. ?y. r x y) <=> (?f. !x. r x (f x))!p. p [] /\ (!h t. p t ==> p (CONS h t)) ==> (!l. p l)!p. p _0 /\ (!n. p n ==> p (SUC n)) ==> (!n. p n)!m n. m < SUC n <=> m <= n!m n. m < SUC n <=> m = n \/ m < n!m n. m <= SUC n <=> m = SUC n \/ m <= n!m n. SUC m <= n <=> m < n!m n. SUC m <= SUC n <=> m <= n!m n. SUC m = SUC n <=> m = n!m. ~(m < 0)!n. ~(SUC n = _0)!n. n <= n!m. m <= 0 <=> m = 0?f. ONE_ONE f /\ ~ONTO fF <=> (!p. p)T <=> (\p. p) = (\p. p)~F <=> T~T <=> F(~) = (\p. p ==> F)COND = (\t t1 t2. @x. ((t <=> T) ==> x = t1) /\ ((t <=> F) ==> x = t2))(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)(!) = (\p. p = (\x. T))(?) = (\p. !q. (!x. p x ==> q) ==> q)(?) = (\p. p ((@) p))(?!) = (\p. (?) p /\ (!x y. p x /\ p y ==> x = y))NUMERAL = (\n. n)setify [] = []LENGTH [] = 0 |
Contained Package |
list-nub-thm |
Comment |
Standard HOL library retrieved from OpenTheory |