Entry |
Value |
Name |
funpow_suc_x |
Conclusion |
!f n x. funpow f (SUC n) x = f (funpow f n x) |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x. x = x!t. (!x. t) <=> t!f n. funpow f (SUC n) = f o funpow f n!f y. (\x. f x) y = f y!f g x. (f o g) x = f (g x)T <=> (\p. p) = (\p. p)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(!) = (\p. p = (\x. T))(o) = (\f g x. f (g x)) |
Contained Package |
natural-funpow-thm |
Comment |
Standard HOL library retrieved from OpenTheory |