Entry
Value
Name
foldl_nil
Conclusion
!f b. foldl f b [] = b
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
!h t. REVERSE (CONS h t) = APPEND (REVERSE t) [h]
!x. x = x
!t. (!x. t) <=> t
!f b h t. foldr f b (CONS h t) = f h (foldr f b t)
!f b. foldr f b [] = b
!f b l. foldl f b l = foldr (C f) b (REVERSE l)
T <=> (\p. p) = (\p. p)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(!) = (\p. p = (\x. T))
REVERSE [] = []
Contained Package
list-fold-thm
Comment
Standard HOL library retrieved from OpenTheory
Back to main package page
Back to contained package page