Entry Value
Name foldl_nil
Conclusion !f b. foldl f b [] = b
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !h t. REVERSE (CONS h t) = APPEND (REVERSE t) [h]
  • !x. x = x
  • !t. (!x. t) <=> t
  • !f b h t. foldr f b (CONS h t) = f h (foldr f b t)
  • !f b. foldr f b [] = b
  • !f b l. foldl f b l = foldr (C f) b (REVERSE l)
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • REVERSE [] = []
  • Contained Package list-fold-thm
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page