Entry Value
Name case_option_id
Conclusion !x. case_option NONE SOME x = x
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !x. x = x
  • !b f a. case_option b f (SOME a) = f a
  • !b f. case_option b f NONE = b
  • !f y. (\x. f x) y = f y
  • !p. p NONE /\ (!a. p (SOME a)) ==> (!x. p x)
  • !x. x = NONE \/ (?a. x = SOME a)
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)
  • (!) = (\p. p = (\x. T))
  • (?) = (\p. !q. (!x. p x ==> q) ==> q)
  • Contained Package option-dest-thm
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page