Entry Value
Name WF
Conclusion !r. WF r <=> (!p. (?x. p x) ==> (?x. p x /\ (!y. r y x ==> ~p y)))
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • Contained Package relation-well-founded-def
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page