Entry |
Value |
Name |
SET_OF_LIST_MAP |
Conclusion |
!f l. set_of_list (MAP f l) = IMAGE f (set_of_list l) |
Constructive Proof |
Yes |
Axiom |
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d) |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x y s. x IN y INSERT s <=> x = y \/ x IN s!x y. x = y <=> y = x!x y. x = y ==> y = x!h t. set_of_list (CONS h t) = h INSERT set_of_list t!x s. x INSERT s = {y | y = x \/ y IN s}!x. ~(x IN {})!x. x = x!p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 /\ q1 ==> p2 /\ q2!p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 \/ q1 ==> p2 \/ q2!t. (!x. t) <=> t!t. (?x. t) <=> t!t. F /\ t <=> F!t. T /\ t <=> t!t. t /\ F <=> F!t. t /\ T <=> t!t. t /\ t <=> t!t. (F <=> t) <=> ~t!t. (T <=> t) <=> t!t. (t <=> F) <=> ~t!t. (t <=> T) <=> t!t. F ==> t <=> T!t. T ==> t <=> t!t. t ==> F <=> ~t!t. t ==> T <=> T!t. F \/ t <=> t!t. T \/ t <=> T!t. t \/ F <=> t!t. t \/ T <=> T!t. t \/ t <=> t!t. t ==> t!f h t. MAP f (CONS h t) = CONS (f h) (MAP f t)!f x s. IMAGE f (x INSERT s) = f x INSERT IMAGE f s!f y. (\x. f x) y = f y!f g. (!x. f x = g x) <=> f = g!f g. (!x. f x = g x) ==> f = g!f s. IMAGE f s = {y | ?x. x IN s /\ y = f x}!t. (\x. t x) = t!f. MAP f [] = []!f. IMAGE f {} = {}!p a. (?x. a = x /\ p x) <=> p a!p x. x IN GSPEC p <=> p x!p x. x IN {y | p y} <=> p x!p q. (!x. p x ==> q x) ==> (?x. p x) ==> (?x. q x)!p. p [] /\ (!h t. p t ==> p (CONS h t)) ==> (!l. p l)!s t. (!x. x IN s <=> x IN t) <=> s = t!s t. (!x. x IN s <=> x IN t) ==> s = tF <=> (!p. p)T <=> (\p. p) = (\p. p)~F <=> T~T <=> F(~) = (\p. p ==> F)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)(!) = (\p. p = (\x. T))(?) = (\p. !q. (!x. p x ==> q) ==> q){} = {x | F}set_of_list [] = {} |
Contained Package |
list-map-thm |
Comment |
Standard HOL library retrieved from OpenTheory |