Entry Value
Name SELECT_AX
Conclusion !p x. p x ==> p ((@) p)
Constructive Proof Yes
Axiom
(\a. a = (\b. (\c. c) = (\c. c)))
(\d. (\e. e = (\f. (\c. c) = (\c. c)))
     (\g. (\h i.
               (\j k.
                    (\l. l j k) =
                    (\m. m ((\c. c) = (\c. c)) ((\c. c) = (\c. c))))
               h
               i <=>
               h)
          (d g)
          (d ((@) d))))
Classical Lemmas N|A
Constructive Lemmas
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • Contained Package axiom-choice
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page