Entry
Value
Name
NOT_NOT_THM
Conclusion
!t. ~ ~t <=> t
Constructive Proof
No
Axiom
!t. t \/ ~t
Classical Lemmas
!t. (t <=> T) \/ (t <=> F)
Constructive Lemmas
T
!t. (F <=> t) <=> ~t
!t. (T <=> t) <=> t
!t. (t <=> F) <=> ~t
!t. (t <=> T) <=> t
!t. F \/ t <=> t
!t. T \/ t <=> T
!t. t \/ F <=> t
!t. t \/ T <=> T
!t. t \/ t <=> t
!t. (t <=> T) \/ (t <=> F)
F <=> (!p. p)
T <=> (\p. p) = (\p. p)
~F <=> T
~T <=> F
(~) = (\p. p ==> F)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)
(!) = (\p. p = (\x. T))
Contained Package
bool-class
Comment
Standard HOL library retrieved from OpenTheory
Back to main package page
Back to contained package page