Entry Value
Name MIN
Conclusion !m n. MIN m n = (if m <= n then m else n)
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • Contained Package natural-order-min-max-def
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page