Entry |
Value |
Name |
MAP_o' |
Conclusion |
!f g. MAP f o MAP g = MAP (f o g) |
Constructive Proof |
Yes |
Axiom |
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d) |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x y. x = y <=> y = x!x y. x = y ==> y = x!x. x = x!p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 /\ q1 ==> p2 /\ q2!p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 \/ q1 ==> p2 \/ q2!t. (!x. t) <=> t!t. F ==> t <=> T!t. T ==> t <=> t!t. t ==> F <=> ~t!t. t ==> T <=> T!t. t ==> t!f h t. MAP f (CONS h t) = CONS (f h) (MAP f t)!f y. (\x. f x) y = f y!f g. (!x. f x = g x) <=> f = g!f g. (!x. f x = g x) ==> f = g!t. (\x. t x) = t!f. MAP f [] = []!p q. (!x. p x ==> q x) ==> (?x. p x) ==> (?x. q x)!f g x. (f o g) x = f (g x)!f g l. MAP (f o g) l = MAP f (MAP g l)!p. p [] /\ (!h t. p t ==> p (CONS h t)) ==> (!l. p l)F <=> (!p. p)T <=> (\p. p) = (\p. p)(~) = (\p. p ==> F)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)(!) = (\p. p = (\x. T))(?) = (\p. !q. (!x. p x ==> q) ==> q)(o) = (\f g x. f (g x)) |
Contained Package |
list-map-thm |
Comment |
Standard HOL library retrieved from OpenTheory |