Entry |
Value |
Name |
MAP_APPEND |
Conclusion |
!f l1 l2. MAP f (APPEND l1 l2) = APPEND (MAP f l1) (MAP f l2) |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x. x = x!p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 /\ q1 ==> p2 /\ q2!p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 \/ q1 ==> p2 \/ q2!t. (!x. t) <=> t!f h t. MAP f (CONS h t) = CONS (f h) (MAP f t)!f. MAP f [] = []!p q. (!x. p x ==> q x) ==> (?x. p x) ==> (?x. q x)!p. p [] /\ (!h t. p t ==> p (CONS h t)) ==> (!l. p l)!l h t. APPEND (CONS h t) l = CONS h (APPEND t l)!l. APPEND [] l = lT <=> (\p. p) = (\p. p)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)(!) = (\p. p = (\x. T))(?) = (\p. !q. (!x. p x ==> q) ==> q) |
Contained Package |
list-map-thm |
Comment |
Standard HOL library retrieved from OpenTheory |