Entry Value
Name LEFT_EXISTS_IMP_THM
Conclusion !p q. (?x. p x ==> q) <=> (!x. p x) ==> q
Constructive Proof No
Axiom
!t. t \/ ~t
Classical Lemmas
  • !t1 t2. ~(t1 ==> t2) <=> t1 /\ ~t2
  • !t. ~ ~t <=> t
  • !t. (t <=> T) \/ (t <=> F)
  • !p q. (!x. p x) ==> q <=> (?x. p x ==> q)
  • !p. ~(?x. p x) <=> (!x. ~p x)
  • Constructive Lemmas
  • T
  • !x. x = x
  • !t1 t2. ~(t1 ==> t2) <=> t1 /\ ~t2
  • !t. ~ ~t <=> t
  • !t. F /\ t <=> F
  • !t. T /\ t <=> t
  • !t. t /\ F <=> F
  • !t. t /\ T <=> t
  • !t. t /\ t <=> t
  • !t. (F <=> t) <=> ~t
  • !t. (T <=> t) <=> t
  • !t. (t <=> F) <=> ~t
  • !t. (t <=> T) <=> t
  • !t. F ==> t <=> T
  • !t. T ==> t <=> t
  • !t. t ==> F <=> ~t
  • !t. t ==> T <=> T
  • !t. F \/ t <=> t
  • !t. T \/ t <=> T
  • !t. t \/ F <=> t
  • !t. t \/ T <=> T
  • !t. t \/ t <=> t
  • !t. t ==> t
  • !t. (t <=> T) \/ (t <=> F)
  • !p q. (!x. p x) /\ q <=> (!x. p x /\ q)
  • !p q. (!x. p x) ==> q <=> (?x. p x ==> q)
  • !p. ~(?x. p x) <=> (!x. ~p x)
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • ~F <=> T
  • ~T <=> F
  • (~) = (\p. p ==> F)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)
  • (!) = (\p. p = (\x. T))
  • (?) = (\p. !q. (!x. p x ==> q) ==> q)
  • Contained Package bool-class
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page