Entry Value
Name ISR_case_sum
Conclusion !f g x. ISR x ==> case_sum f g x = g (OUTR x)
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !a. ~ISR (INL a)
  • !x. x = x
  • !b. ISR (INR b)
  • !b. OUTR (INR b) = b
  • !t. (F <=> t) <=> ~t
  • !t. (T <=> t) <=> t
  • !t. (t <=> F) <=> ~t
  • !t. (t <=> T) <=> t
  • !t. F ==> t <=> T
  • !t. T ==> t <=> t
  • !t. t ==> F <=> ~t
  • !t. t ==> T <=> T
  • !t. t ==> t
  • !f g a. case_sum f g (INL a) = f a
  • !f g b. case_sum f g (INR b) = g b
  • !p. (!a. p (INL a)) /\ (!b. p (INR b)) ==> (!x. p x)
  • !x. (?a. x = INL a) \/ (?b. x = INR b)
  • F <=> (!p. p)
  • T <=> (\p. p) = (\p. p)
  • (~) = (\p. p ==> F)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)
  • (!) = (\p. p = (\x. T))
  • (?) = (\p. !q. (!x. p x ==> q) ==> q)
  • Contained Package sum-thm
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page