Entry |
Value |
Name |
INTERS_UNION |
Conclusion |
!s t. INTERS (s UNION t) = INTERS s INTER INTERS t |
Constructive Proof |
Yes |
Axiom |
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d) |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x y. x = y <=> y = x!x y. x = y ==> y = x!x. x = x!t. (!x. t) <=> t!t. (F <=> t) <=> ~t!t. (T <=> t) <=> t!t. (t <=> F) <=> ~t!t. (t <=> T) <=> t!t. F ==> t <=> T!t. T ==> t <=> t!t. t ==> F <=> ~t!t. t ==> T <=> T!t. t ==> t!f y. (\x. f x) y = f y!f g. (!x. f x = g x) <=> f = g!f g. (!x. f x = g x) ==> f = g!t. (\x. t x) = t!p a. (?x. a = x /\ p x) <=> p a!p x. x IN GSPEC p <=> p x!p x. x IN {y | p y} <=> p x!p q. (!x. p x /\ q x) <=> (!x. p x) /\ (!x. q x)!s t x. x IN s INTER t <=> x IN s /\ x IN t!s t x. x IN s UNION t <=> x IN s \/ x IN t!s t. (!x. x IN s <=> x IN t) <=> s = t!s t. s INTER t = {x | x IN s /\ x IN t}!s t. s UNION t = {x | x IN s \/ x IN t}!s t. (!x. x IN s <=> x IN t) ==> s = t!s x. x IN INTERS s <=> (!t. t IN s ==> x IN t)!s. INTERS s = {x | !u. u IN s ==> x IN u}F <=> (!p. p)T <=> (\p. p) = (\p. p)(~) = (\p. p ==> F)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)(!) = (\p. p = (\x. T))(?) = (\p. !q. (!x. p x ==> q) ==> q) |
Contained Package |
set-thm |
Comment |
Standard HOL library retrieved from OpenTheory |