Entry |
Value |
Name |
FORALL_SUBSET_UNION |
Conclusion |
!p t u.
(!s. s SUBSET t UNION u ==> p s) <=>
(!t' u'. t' SUBSET t /\ u' SUBSET u ==> p (t' UNION u')) |
Constructive Proof |
Yes |
Axiom |
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d) |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x y. x = y <=> y = x!x y. x = y ==> y = x!x. x = x!p q r. p /\ (q \/ r) <=> p /\ q \/ p /\ r!t1 t2. t1 /\ t2 <=> t2 /\ t1!t1 t2. t1 \/ t2 <=> t2 \/ t1!a b. (a <=> b) ==> a ==> b!t. (!x. t) <=> t!t. F /\ t <=> F!t. T /\ t <=> t!t. t /\ F <=> F!t. t /\ T <=> t!t. t /\ t <=> t!t. (F <=> t) <=> ~t!t. (T <=> t) <=> t!t. (t <=> F) <=> ~t!t. (t <=> T) <=> t!t. F ==> t <=> T!t. T ==> t <=> t!t. t ==> F <=> ~t!t. t ==> T <=> T!t. F \/ t <=> t!t. T \/ t <=> T!t. t \/ F <=> t!t. t \/ T <=> T!t. t \/ t <=> t!t. t ==> t!f y. (\x. f x) y = f y!f g. (!x. f x = g x) <=> f = g!f g. (!x. f x = g x) ==> f = g!t. (\x. t x) = t!p a. (?x. a = x /\ p x) <=> p a!p x. x IN GSPEC p <=> p x!p x. x IN {y | p y} <=> p x!s t x. x IN s INTER t <=> x IN s /\ x IN t!s t x. x IN s UNION t <=> x IN s \/ x IN t!s t u. s UNION t SUBSET u <=> s SUBSET u /\ t SUBSET u!s t u. s INTER (t UNION u) = s INTER t UNION s INTER u!s t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u!s t. (!x. x IN s <=> x IN t) <=> s = t!s t. s SUBSET t <=> (!x. x IN s ==> x IN t)!s t. s SUBSET t <=> s INTER t = s!s t. s INTER t = {x | x IN s /\ x IN t}!s t. s INTER t = t INTER s!s t. s UNION t = {x | x IN s \/ x IN t}!s t. s UNION t = t UNION s!s t. (!x. x IN s <=> x IN t) ==> s = t!s t. s SUBSET t UNION s!s t. s SUBSET s UNION t!s t. t INTER s SUBSET s!s t. s INTER t SUBSET sF <=> (!p. p)T <=> (\p. p) = (\p. p)(~) = (\p. p ==> F)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)(!) = (\p. p = (\x. T))(?) = (\p. !q. (!x. p x ==> q) ==> q) |
Contained Package |
set-thm |
Comment |
Standard HOL library retrieved from OpenTheory |