Entry |
Value |
Name |
FINITE_HAS_SIZE |
Conclusion |
!s. FINITE s <=> s HAS_SIZE CARD s |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x. x = x!t. (!x. t) <=> t!t. F /\ t <=> F!t. T /\ t <=> t!t. t /\ F <=> F!t. t /\ T <=> t!t. t /\ t <=> t!s n. s HAS_SIZE n <=> FINITE s /\ CARD s = nF <=> (!p. p)T <=> (\p. p) = (\p. p)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(!) = (\p. p = (\x. T)) |
Contained Package |
set-size-thm |
Comment |
Standard HOL library retrieved from OpenTheory |