Entry
Value
Name
FINITE_EMPTY
Conclusion
FINITE {}
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
!x. x = x
!p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 /\ q1 ==> p2 /\ q2
!p1 p2 q1 q2. (p1 ==> p2) /\ (q1 ==> q2) ==> p1 \/ q1 ==> p2 \/ q2
!p q. (!x. p x ==> q x) ==> (?x. p x) ==> (?x. q x)
T <=> (\p. p) = (\p. p)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
(==>) = (\p q. p /\ q <=> p)
(\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)
(!) = (\p. p = (\x. T))
(?) = (\p. !q. (!x. p x ==> q) ==> q)
Contained Package
set-finite-def
Comment
Standard HOL library retrieved from OpenTheory
Back to main package page
Back to contained package page