Entry
Value
Name
EXP_SUC
Conclusion
!m n. m EXP SUC n = m * m EXP n
Constructive Proof
Yes
Axiom
N|A
Classical Lemmas
N|A
Constructive Lemmas
T
T <=> (\p. p) = (\p. p)
(/\) = (\p q. (\f. f p q) = (\f. f T T))
Contained Package
natural-exp-def
Comment
Standard HOL library retrieved from OpenTheory
Back to main package page
Back to contained package page