Entry |
Value |
Name |
EXISTS_IN_UNION |
Conclusion |
!p s t.
(?x. x IN s UNION t /\ p x) <=>
(?x. x IN s /\ p x) \/ (?x. x IN t /\ p x) |
Constructive Proof |
Yes |
Axiom |
N|A |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x. x = x!p q r. (p \/ q) /\ r <=> p /\ r \/ q /\ r!t. (!x. t) <=> t!t. (F <=> t) <=> ~t!t. (T <=> t) <=> t!t. (t <=> F) <=> ~t!t. (t <=> T) <=> t!f y. (\x. f x) y = f y!p a. (?x. a = x /\ p x) <=> p a!p x. x IN GSPEC p <=> p x!p x. x IN {y | p y} <=> p x!p q. (?x. p x \/ q x) <=> (?x. p x) \/ (?x. q x)!s t x. x IN s UNION t <=> x IN s \/ x IN t!s t. s UNION t = {x | x IN s \/ x IN t}F <=> (!p. p)T <=> (\p. p) = (\p. p)(~) = (\p. p ==> F)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)(!) = (\p. p = (\x. T))(?) = (\p. !q. (!x. p x ==> q) ==> q) |
Contained Package |
set-thm |
Comment |
Standard HOL library retrieved from OpenTheory |