Entry |
Value |
Name |
EQ_EXT |
Conclusion |
!f g. (!x. f x = g x) ==> f = g |
Constructive Proof |
Yes |
Axiom |
(\a. a = (\b. (\c. c) = (\c. c))) (\d. (\e. d e) = d) |
Classical Lemmas |
N|A |
Constructive Lemmas |
T!x. x = x!t. F ==> t <=> T!t. T ==> t <=> t!t. t ==> F <=> ~t!t. t ==> T <=> T!t. t ==> t!t. (\x. t x) = tF <=> (!p. p)T <=> (\p. p) = (\p. p)(~) = (\p. p ==> F)(/\) = (\p q. (\f. f p q) = (\f. f T T))(==>) = (\p q. p /\ q <=> p)(!) = (\p. p = (\x. T)) |
Contained Package |
bool-ext |
Comment |
Standard HOL library retrieved from OpenTheory |