Entry Value
Name DIFF
Conclusion !s t. s DIFF t = {x | x IN s /\ ~(x IN t)}
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • Contained Package set-def
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page