Entry Value
Name APPEND_SING
Conclusion !h t. APPEND [h] t = CONS h t
Constructive Proof Yes
Axiom
N|A
Classical Lemmas N|A
Constructive Lemmas
  • T
  • !x. x = x
  • !t. (!x. t) <=> t
  • !l h t. APPEND (CONS h t) l = CONS h (APPEND t l)
  • !l. APPEND [] l = l
  • T <=> (\p. p) = (\p. p)
  • (/\) = (\p q. (\f. f p q) = (\f. f T T))
  • (==>) = (\p q. p /\ q <=> p)
  • (!) = (\p. p = (\x. T))
  • Contained Package list-append-thm
    Comment Standard HOL library retrieved from OpenTheory
    Back to main package pageBack to contained package page